• Session 1
  • Session 2
  • Session 3
  • Session 4
  • Session 5
  • Session 6
  • Session 7
  • Session 8
  • Session 9
  • Session 10
  • Session 11
  • Session 12

 

Session 1 “New methods and technologies”
Yonghua Li-Beisson

S1 O5 Advanced engineering of lipid pathways in Nicotiana benthamiana leaves using a draft genome assembly and the V2 viral silencing-suppressor protein. F. Naim, K. Nakasugi, E. Hilario, J. Taylor, S. Singh, R. Crowhurst, R. Hellens, P. Waterhouse and Craig Wood. CSIRO Plant Industry, Canberra Australia. University of Sydney, Sydney Australia. Institute of Plant and Food Research, New Zealand.

S1 O7 Refined isotopomer labelling analysis of lipid-linked epimerization and desaturation of glyceroglycolipids in cyanobacteria. Sato, N. (1,2), Okazaki, Y.3 and Saito, K. (3,4). (1) University of Tokyo, 153‐8902 Tokyo, Japan. (29 JST, CREST, Tokyo, 102‐0076 Japan. (3) RIKEN Plant Science Center, Yokohama, 230‐0045 Japan. (4) Chiba University, Chiba, 263‐8522 Japan.

 

 

Session 2 “Fatty acid biosynthesis and modification”
Penny Von Wettstein-Knowles

S2 O1 Regulation of fatty acid synthesis in Canola and understanding desaturase regioselectivity. John Shanklin, C. Andre and E. Whittle (BNL); J. Guy, M. Moche, J. Lengqvist, and Y. Lindqvist, (KI) ; and R. Haslam, (RR). Brookhaven National Laboratory, Upton, NY 11973, USA. Karolinska Institute Stockholm, Sweden. Rothamstead Research, UK.

 

Session 3 “Chloroplast lipid metabolism”
Peter Dörmann

S3 O2 Identification of the missing epimerase involved in galactolipid synthesis in cyanobacteria – Are galactolipids necessary for the thylakoid membranes? Koichiro Awai (1), H. Ohta (2) and N. Sato (3). (1) Division of Global Research Leaders, Shizuoka University, Japan. (2) Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan. (3) Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.

S3 O4 Updating the galactolipid synthesis model. Asdrúbal Burgos, J. Szymanski, and L. Willmitzer. Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.

 

Session 4 “Storage lipids: accumulation and modification”
Mee-Len Chye

S4 O1 Molecular biology of triacylglycerol biosynthesis in developing flax seed. X. Pan, A.D. Wickramarathna, R.M.P.Siloto and Randall J. Weselake. Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

S4 O3 Phosphatidylcholine diacylglycerol exchange and acyl-editing are major mechanisms affecting fatty acid composition in seed triacylglycerols. Chaofu Lu, J. Browse, P. Bates, A. Snapp, Z. Hu, Z. Ren and A. Carlsson. Montana State University, Bozeman, USA. Washington State University, Pullman, USA. Swedish University of Agricultural Sciences, Sweden.

 

 

Session 5 “Surface lipids/Extracellular lipid metabolism”
René Lessire

S5 O1 Dissecting the alkyl hydroxycinnamate biosynthetic pathway. Dylan K. Kosma (1), A. Rice (1), I. Molina (2), O. Rowland (3), F. Domergue (4), J.B. Ohlrogge (1) and M. Pollard (1). (1) Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA. (2) Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada. (3) Laboratoire de Biogenèse Membranaire, Université Victor Ségalen Bordeaux 2, CNRS, Bordeaux, France. (4) Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada.

S5 O5 Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Tegan M. Haslam, A. Manas Fernandez and L. Kunst. University of British Columbia, Vancouver, BC, Canada.

S5 O6 Biosynthesis and functions of free and combined fatty alcohols associated with suberin. Sollapura J. Vishwanath (1), F. Domergue (2), D.K. Kosma (3), I.P. Pulsifer (1) and O. Rowland (1). (1) Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada. (2) Laboratoire de Biogenèse Membranaire, Université Victor Ségalen Bordeaux 2, CNRS-UMR 5200, Bordeaux, France. (3) Department of Plant Biology, Michigan State University, East Lansing, MI, USA.

 

 

 

Session 6 “Oxylipins”
Ivo Feussner

S6 O3 Factors affecting hydroperoxide lyase performance in the synthesis of oxylipin volatiles responsible for virgin olive oil quality. A. Sanchez-Ortiz, A.G. Perez and Carlos Sanz. Department of Physiology and Technology of Plant Products. Instituto de la Grasa (CSIC), Seville, Spain.

 

 

 

Session 7 “Isoprenoids”
Damaso Hornero Mendez

S7 O4 Trisporoids composition in Blakeslea trispora under the lycopenogenesis stimulation. Olga A. Vereshchagina,  A.S. Memorskaya and V.M. Tereshina. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia.

 

 

Session 8 “Sphingolipids and sterols”
Edgar Cahoon

S8 O6 Quantification of free sterols, sterol esters, sterol glucosides and acylated sterol glucosides in plants by Q-TOF mass spectrometry. Vera Wewer, I. Dombrink, K. vom Dorp and P. Dörmann. Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany.


 

Session 9 “Lipid trafficking and signalling”
Christoph Benning

S9 O2 Role of Arabidopsis acyl-CoA-binding proteins in lipid trafficking. Mee-Len Chye. School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.

S9 O3 Phloem-mediated long-distance lipid signaling in plants. U. Benning, B. Tamot and Susanne Hoffmann-Benning. Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI, USA.

 

 

Session 10 “Algal and fungal lipids”
John Harwood

S10 O5 Phosphatidic acids in Aspergillus niger under heat shock. Vera M. Tereshina (1), A. S. Memorskaya (1) and E.R Kotlova (2). (1) Winogradsky Institute of Microbiology Russian Academy of Sciences, Moscow, Russian Federation. (2) Komarov Botanical Institute Russian Academy of Sciences, St. Petersburg, Russian Federation.

 

 

Session 11 “Plant lipid biotechnology”
Johnathan Napier

S11 O5 Metabolic engineering plant seeds with fish oil-like levels of DHA. James Petrie and S. Singh. CSIRO Food Futures National Research Flagship, Canberra, Australia.

S11 O6 The molecular basis of high and super-high oleic safflower seed oils. Craig Wood, Q. Liu, J. Cao, X.-R. Zhou, A. Green and S. Singh. CSIRO Plant Industry, Canberra, Australia.

 

 

Session 12 “Future developments”
John B. Ohlrogge

S12 O1 Plant lipids in 2030. John B. Ohlrogge (1) and S. Stymne (2). (1) Department of Plant Biology, Michigan State University, East Lansing, MI, USA. (2) Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Alnarp, Sweden.

S12 O3 Comparison of transcriptome changes associated to oil accumulation in oil palm mesocarp and in oil seeds. F. Bourgis (1), A. Kilaru (2), X. Cao (3), E. Legrand (1), B. Beauvoit (4), M. Maucourt (4), C. Deborde (4), A. Moing (4), G.-F. Ngando-Ebongue (5), N. Drira (6), J. Ohlrogge (3) and Vincent Arondel (1). (1) Laboratoire de Biogenèse Membranaire, CNRS UMR5200, Université Bordeaux Segalen, Bordeaux, France. (2) Department of Biological Sciences, East Tennessee State University, Johnson City, USA. (3) Great Lakes Bioenergy Research Centre, Michigan State University, East Lansing, USA. (4) UMR 1332 Biologie du Fruit et Pathologie, Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, INRA Université de Bordeaux, Villenave d’Ornon, France. (5) Centre de Recherches sur le Palmier à Huile (CEREPAH) de la Dibamba, IRAD, Douala, Cameroon. (6) Laboratoire de Biotechnologie Végétale, Faculté des Sciences de Sfax, Sfax, Tunisia.